Gap-X-Gap studies for $\sqrt{s} = 1960$ GeV and 900GeV

M. Żurek, A. Święch Jagiellonian University, Krakow

D. Lontkovskyi, I. Makarenko University of Kyiv

> M. Albrow, J.Lewis FNAL

Contents

- Data sample
- Gap cuts
- Exclusivity cuts
- 2 Exclusive tracks on primary vertex
 - Low mass studies
 - χ_C
- 4 Exclusive tracks on primary vertex
- 4 Tracks with displaced vertices

Data sample

- Datasets used:
 - gdifap 1960 GeV
 - gdifar 900 GeV
- Same trigger requirement:
 DIFF_TWO_CJET0.5_PLUGVETO_0.75
 - 2 central ($|\eta|$ <2.11) towers with Et > 0.5 GeV
 - Signal in plug (2.11<| η |<3.64) with Et <0.75 GeV
 - BSC1 and CLC in veto
 - L=6.98/pb 1960 GeV and L=0.075/pb 900 GeV
 - Gaps at least from $|\eta|=2.11$ to $|\eta|=5.9$
 - We also use extended gaps, from $|\eta|=1.0$

Gap cuts – idea and BSC1 West

- To determine noise levels in subdetectors we divide zero-bias sample from same periods into two:
 - No Interaction:
 - No tracks
 - No CLC hits
 - No muon stubs
 - Interaction:
 - Opposite

CLC West and Em Plug East

Exclusivity cuts in central region

 To determine exclusive 2-4 tracks we apply similar technique in central region, just excluding cones of radius 0.3 around each track extrapolation.

Effective exclusive luminosity

- We determine efficiency of having no-pileup using zero-bias sample. We measure ratio of empty events (all detectors on noise level) to all events.
- Should drop exponentially with bunch luminosity and be equal 1 at L=0. Slope corresponds to total inelastic cross section:
 - 56.7 mb 1960 GeV
 - 61.0 mb 900 GeV
- Effective luminosities:
 - 1.16/pb 1960 GeV
 - 0.059/pb 900 GeV

2 Exclusive tracks on primary vertex

- Additional cuts:
 - Small impact parameter < 0.5 mm
 - Pt > 0.3 GeV
 - 3D opening angle
 <3.1 (cosmics cut)
 - Opposite charge tracks

Mass spectra assuming 2 Pions $|\eta|$ <2.1

Mass spectra – Pt dependence $|\eta|$ < 2.1

CDF Run II Preliminary, Not corrected for acceptance, \(\sigma = 1960 \) GeV

Mass spectra – Pt dependence $|\eta|$ < 2.1

CDF Run II Preliminary, Not corrected for acceptance, \sqrt{s} = 900 GeV

Mass spectra assuming 2 Pions $|\eta|$ <1.0

Mass spectra – Pt dependence $|\eta| < 1.0$

CDF Run II Preliminary, Not corrected for acceptance, \(\sigma = 1960 \) GeV

Mass spectra – Pt dependence $|\eta| < 1.0$

CDF Run II Preliminary, Not corrected for acceptance, \sqrt{s} = 900 GeV

χ_c search

- Cuts to enhance signal/noise ratio for χ_c :
 - $|\eta| < 1.0$
 - Pt of each track> 1.5 GeV/c
 - $\Delta \phi < 2.1$
 - Assuiming tracks to be pions

4 Tracks on primary vertex

Additional cuts:

- Small impact parameter or reconstructed vertex
- Pt > 0.3 GeV
- Total charge = 0

Assumed to be pions

4 Tracks with displaced vertices

- Additional cuts:
 - Big decay length Lxy
 - Collinearity of primary-secondary vertex direction and Pt direction
 - Conversion veto
- Invariant mass of 2 tracks assuming pions with K0s fit:

K0s pairs

- After finding one K0s with big Lxy, good colinearity and mass consistent with K0s we look for other pair mass.
- If second pair is in mass window, we call it a K0s

K0s pairs – Invariant Mass

Selected K0s pairs invariant mass:

K0s + K* etc. search

 If second pair comes from beamline, we assume that one of the particles is Kaon, and second is Pion, to look for K* etc.

More to be done:

- Correcting for acceptance
- Including 2 tracks > 2 GeV/c trigger to enhance χ_c signal
- Compare with Monte Carlo
- Approve results
- Write papers
- Complete by Summer

Thank you